MicroRNA regulatory pathway analysis identifies miR-142-5p as a negative regulator of TGF-β pathway via targeting SMAD3
نویسندگان
چکیده
MicroRNAs (miRNAs) are non-coding RNAs with functions of posttranscriptional regulation. The abnormally expressed miRNAs have been shown to be crucial contributors and may serve as biomarkers in many diseases. However, determining the biological function of miRNAs is an ongoing challenge. By combining miRNA targets prediction, miRNA and mRNA expression profiles in TCGA cancers, and pathway data, we performed a miRNA-pathway regulation inference by Fisher's exact test for enrichment analysis. Then we constructed a database to show the cancer related miRNA-pathway regulatory network (http://bioinfo.life.hust.edu.cn/miR_path). As one of the miRNAs targeting many cancer related pathways, miR-142-5p potentially regulates the maximum number of genes in TGF-β signaling pathway. We experimentally confirmed that miR-142-5p directly targeted and suppressed SMAD3, a key component in TGF-β signaling. Ectopic overexpression of miR-142-5p significantly promoted tumor cell proliferation and inhibited apoptosis, while silencing of miR-142-5p inhibited the tumor cell proliferation and promoted apoptosis in vitro. These findings indicate that miR-142-5p plays as a negative regulator in TGF-β pathway by targeting SMAD3 and suppresses TGF-β-induced growth inhibition in cancer cells. Our study proved the feasibility of miRNA regulatory pathway analysis and shed light on combining bioinformatics with experiments in the research of complex diseases.
منابع مشابه
LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملmiR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway
MiRNAs have been reported to regulate gene expression and be associated with cancer progression. Recently, miR-424-5p was reported to play important role in a variety of tumors. However, the role and molecular mechanisms of miR-424-5p in GC (gastric cancer) remains largely unknown. In this study, we aimed to explore the role of miR-424-5p in GC. QRT-PCR was used to determine the expression leve...
متن کاملMiR-490-5p Functions as an OncomiR in Breast Cancer by Targeting NFATc4
Breast cancer is a serious health problem worldwide in women. MicroRNAs are small non-coding RNAs of 18–25 nucleotides in length that post-transcriptionally modulate gene expression. MiR-490 has been reported as a tumor suppressor and oncomiR microRNA in breast cancer with two separate targets, NFAT and Rho. NFAT is one of the targets for miR-490 but the relationship between hsa</e...
متن کاملMicroRNA profiling identifies miR-129-5p as a regulator of EMT in tubular epithelial cells.
The importance of microRNAs in various diseases has been demonstrated, but their potential role in the pathogenesis of renal fibrosis needs to further research. We have profiled changes in microRNA levels in human kidney proximal tubular cell line HK-2 with TGF-β treatment and identified significantly altered miRNAs. miR-129-5p, was one of the significant down-regulated miRNAs in experimental m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016